
ERDC MSRC/PET TR/00-12

Scientific Visualization of Water Quality
 in the Chesapeake Bay

by

Robert Stein
 Alan M. Shih

M. Pauline Baker
Carl F. Cerco
Mark R. Noel

3 April 2000

07h0012000

Scientific Visualization of Water Quality in the Chesapeake Bay

Robert Stein1, Alan M. Shih2, M. Pauline Baker3

National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign

Carl F. Cerco4, Mark R. Noel5

U. S. Army Engineer Research and Development Center

Abstract
This paper describes our experience in designing and

building a tool for visualizing the results of the CE-QUAL-
ICM Three-Dimensional Eutrophication Model, as applied to
water quality in the Chesapeake Bay. This model outputs a
highly multidimensional dataset over very many timesteps –
outstripping the capabilities of the visualization tools available
to the research team. As part of the Army Engineer Research
and Development Center (ERDC) Programming Environment
and Training (PET) project, a special visualization tool was
developed. This paper includes discussions on how the
simulation data are handled efficiently, as well as how the
issues of usability, flexibility and collaboration are addressed.

Introduction
The Chesapeake Bay is the largest and most

productive estuary in the United States. With a surrounding
population of about 15 million people, and a valuable place in
the fishing industry, the Chesapeake Bay is a very important
natural resource to the region. Population growth and the
development of agriculture and industry in the area
surrounding the bay have had a significant impact on this
ecosystem.

Scientists at the U. S. Army Engineer Research
Development Center (ERDC) and the Environmental
Protection Agency (EPA) have developed a computational
model to help them understand the effects of pollutants and
contaminants on the water quality of the Chesapeake Bay.
This computational system allows scientists to validate and
predict the water quality in the bay through dozens of
constituents produced by the simulation.

Comparing model simulations with existing field
observations and examining model predictions of future
environmental scenarios, not only require statistical
measurements, but more importantly, require visualization.
Visualization of this model has been through many derivations
and software packages, both commercial and customized.

Available commercial visualization tools are
sometimes tedious to use for handling both the unique data
format used by the computational model and the particular
needs of the researchers. Therefore, a custom visualization

tool was developed to accurately and efficiently deal with the data
from this model, and to aid in analysis of the data by applying a
set of advanced visualization algorithms. Sample results are
presented in this paper.

Before the development of this tool scientists used
standard X-Y line graphs and simple 2-dimensional slices to
visualize the model prediction. S.C.I.R.T., the Site
Characterization Interactive Research Toolkit, [6] was the first
visualization tool which included 3-dimensional comparisons of
model predictions and observed data and 3-dimensional views of
flow/flux vector predictions.

Requirements
In developing a user-friendly visualization package

tailored for the Chesapeake Bay water quality simulation project,
we found that the user had several needs. First it needed to handle
the specific data format of the simulation in a simple and efficient
manner, and allow the user to apply a variety of visualization
methods to the data. This implies the development and
integration of various data conversion utility programs. Another
purpose of this tool was to be able to use it to verify the
correctness of the computational model if needed. It should be
able to view and analyze the computational domain as well as the
physical domain, and highlight areas that are obvious errors in the
computation. Next, the tool needed to be able to easily generate
graphics for the user to include in various papers and
presentations. Since members of the team studying this water
quality problem were located at various sites across the country,
the tool needed to support various methods of collaboration.
Lastly, and most importantly, all of this functionality needed to be
available to the user in an easily understood interface.

Numerical Domain
The numerical domain used in this simulation consists of

10196 grid cells. The computational model outputs more than 100
scalar variables, and more than 10 vector variables. A routine run
of the computation covers a whole calendar year generating 365
timesteps, and larger runs have also been made projecting out 10
and 20 years into the future.

The cells for the simulation are hexahedral in shape and
are non-uniform in the x and y dimensions but all cells are
uniformly spaced in depth. The grid itself is unstructured in

1 Research Programmer, rstein@ncsa.uiuc.edu
2 Research Scientist, ashih@ncsa.uiuc.edu
3 Associate Director, baker@ncsa.uiuc.edu
4 Research Hydrologist, cerco@homer.wes.army.mil
5 Research Scientist, noel@tempest.wes.army.mil

nature, however, the cells are arranged by water columns (i.e.
neighbors along the z-axis have the same dimensions in x and
y). This is to accommodate the water depth variation at each
location. Coordinates of the grid cell vertices are stored as
latitudes and longitudes with the depth in meters. The
coordinate system was converted into a Cartesian system in
meters for the convenience of visualization. Dimensions in X
and Y are relatively larger than the one in the Z (depth)
direction. It thus makes the domain a very thin plate. In order
to visualize the data within this domain more meaningfully,
allowing the user to control the scaling in each direction was
implemented.

Scalar constituent values are stored at the cell centers.
In order to support visualization methods that require a
continuous scalar field, such as isosurfacing, these values were
also interpolated to the vertices of each cell. Vector
constituent fields are supplied from the model, but their values
reflect face-centered fluxes entering and exiting the cells.
This is complicated by the fact that entering and exiting faces
of a particular cell do not necessarily have the same geometry.
In order to extract a meaningful vector field on which
visualization methods could be applied, the first step is to find
the surface normal of each face. This value is then used to
decompose each face vector into its components and sum all
components across the cell to obtain a correct cell-centered
vector value. (See Figure 1.) In addition, each face-centered
value was also normalized by the area of the cell. Since the
vector field was based on the flux through an individual cell's
faces, cells with smaller surface area had vectors with very
small magnitude relative to the larger cells, and were therefore
difficult to see. Normalizing each vector by the area of the
cell allows the scientist to quickly examine the vector field to
ensure the correctness of the model.

Figure 1. Cell Centered Vector Field in Physical Domain

To facilitate visual detection of anomalies in the
computational model, the user is allowed to toggle the display
between computational and physical domains. The display of
the computational domain is simply a grid with the same
structure where each cell of the grid is of uniform shape and
size. This is desirable since many of the domain cells in the
rivers of the bay are very tiny and difficult to see in the
physical domain. In the computational domain all cells are the
same size such that errors, even in small river cells, are easy to
detect (Figure 2).

Visualization
We chose to use VTK (the Visualization Toolkit) for

developing the visual representations for the application. VTK is
an open-source, freely available software system for computer
graphics, image processing, and visualization. It supports
hundreds of algorithms in visualization and image processing
fields.

To facilitate the development of a dynamic and flexible
visualization application, a general library API called the
Visualization Generator (VisGen) was developed. The
Visualization Generator is a high level component for the
development of 3D graphics applications. The VisGen library sits
on top of VTK allowing the user to dynamically build VTK
graphics pipelines for the production of interactive 3D scientific
visualizations. The design of the VisGen is such that the
implementation details of VTK are hidden from the novice user,
but are available to experienced users for integration into complex
applications and working environments.

The API of the VisGen is designed around a message-
passing scheme where messages pass from the application layer to
the VisGen. As a result of these messages, the VisGen produces a
set of graphical objects that are available to the application for
rendering. Since these messages are simple strings, the API makes
it very easy to use applications in a collaborative fashion where
application states are shared between multiple users. In addition,
this type of messaging also easily supports rapid prototyping of
new data, remote visualization, and easy integration with
components of the user interface.

Figure 2. Computation vs. Physical Domains

Figure 3. Cell-Centered vs. Vertex-Centered Slicing

The application supports a variety of visualization
methods applying to scalar and vector data. These methods
include slicing planes, isosurfacing, a representation of the
external shell of the domain, and vector fields (Figures 8, 11).

The user is allowed to view the results of any of these methods
in both the physical and computational domains.

In addition, depending on whether the user specifies
cell-centered or vertex-centered data as input to a particular
method, an appropriate representation is chosen if possible.
(See Figure 3.)

Due to the actual dimensions of the domain (the main
stem of the bay is about 300 km long and 8-48 km wide) the
computational grids are relatively coarse. Consequently, the
grid sizes may exceed the actual scales of the flow features as
each cell face can be as big as more than 100 square
kilometers. Therefore, the use of streamlines for visualizing
the vector data may not always return meaningful results. The
user can also specify a variety of color maps to apply to the
representations allowing them more freedom in the final
appearance of the image. In addition, there exists the ability to
do custom titling, and color bars denoting the mapping of data
to screen color are automatically positioned on the screen as
each new dataset is added. For example, Figure 9 shows 4
variables, each with their own color legend and Figure 10 is a
close-up view near the mouth of the bay.

We also experimented with building some
functionality directly in OpenGL. Figure 4 shows an initial
version of a tool to display the transport flux data. Though the
tool provided the functionality of visualizing the vector data,
the coding itself was far more complicated and laborious
compared to the similar implementation using VTK.

Figure 4. Initial prototype of vector data visualization
implemented using OpenGL

Graphical User Interface (GUI)
As mentioned above, another important aspect in the

design of this tool was that of the user interface. We based the
current version of this interface on a library called the Fast
Light Toolkit (FLTK) (Figure 6). FLTK provides a very
comprehensive collection of widget classes, such as buttons
and sliders, which allows users to build the GUI quickly and
easily. It provides a visual programming environment called
FLUID. This makes it very easy to design the GUI visually,
and to integrate effectively with C++ code.

Unfortunately, there exists no standard way to
interface the graphics window of a VTK based application
with FLTK. A subclass of one of the FLTK windowing

classes was therefore developed. It allows developers to include
the VTK graphics, and track the user's mouse and button events in
the FLTK GUI windows. This allows a developer to take the full
advantage of both packages (Figure 7).

Because of the high level object-oriented nature of the
VisGen library that we developed, the user can easily and
intuitively add and remove different scalar and vector data fields
for analysis. We call these DataNodes. Once a DataNode exists,
the user can then apply any of the visualization methods available
to this data. This generates a particular representation depending
on the method, which is called a VisNode. The user is free to
construct any combination of VisNodes and DataNodes to
compose the image on the screen and can name each VisNode and
DataNode that might make sense.

To support the user's need for graphics to use in
publications and presentations, we included a variety of ways of
exporting the current graphics window. First, and most simply,
we provided the ability to save the current screen as a JPEG
compressed image. This works nicely so that saved images can
be put directly on the web without further conversion. The tool
also has the ability to export a file to a high quality renderer called
RenderMan. This software can give high quality, production level
renderings of these images.

Of particular interest to the user was the ability to
capture animations. This was made more difficult by the large
number of timesteps in the computation, coupled with the large
number of possible scalar and vector fields. Our tool incorporates
this ability to play through animations and to capture QuickTime
movies directly from the screen, for long numbers of timesteps
and large resolutions. We have used the tool to capture
animations at a resolution of greater than 1280 x 1024 with more
than 365 timesteps. Lastly, the ability for the user to capture the
current visualization as a VRML file capable of being viewed
through a standard web browser are provided. This gives the user
the ability to actually rotate the model of the bay and get a better
feel for the spatial relationships.

Collaboration
The core members of the research team are located in

multiple buildings at their site and they collaborate with members
who reside in another state. We experimented with sharing the
visualization sessions across the network using existing
conference software. On a notebook computer running Windows
98, NetMeeting was used while SGIMeeting was used for an SGI
Octane running IRIX 6.5. This visualization tool can be executed
on the SGI and is shared between the PCs or SGI workstations
using existing software. Since conferencing software provide
many salient features such as control authorization, which allows
different participant to take control of the visualization tool,
collaborated visualization can be achieved seamlessly and
efficiently. Figure 5 demonstrated the synchronized collaboration
of the visualization tool.

(a) Windows 98 Environment using NetMeeting Software

(b) SGI IRIX 6.5 Environment using SGIMeeting Software

Figure 5. Collaboration between Windows PC and SGI
Workstations

Summary
In conclusion, we have developed a comprehensive

scientific visualization tool to handle the understanding and
analysis of water quality in the Chesapeake Bay. Some
problematic issues in efficiently handling and processing the
data format from the computational model was resolved
through this work, and a sophisticated system for dynamically
generating visualizations of the data have been implemented.
In addition, the development of the VisGen library allows for
high-level, flexible control of the VTK graphics pipeline.
Coupled with an easy-to-use interface to the application, this
allows the user a lot of control over the graphical
representation of the data. Once the user has a representation
he/she is pleased with, a wide variety of options are provided
for how this can be used in presentation, or for sharing with
remote colleagues.

Acknowledgement
This work was carried out as part of the

Programming Environment and Training component of the
DoD High-Performance Computing Modernization Program.

References
1. Homepage for The Fast Light Toolkit (FLTK)

http://www.fltk.org

2. Homepage for The Visualization Toolkit (VTK)
http://www.kitware.com/vtk.html

3. William J. Schroeder, Kenneth M. Martin, and William E.
Lorenson. "The Design and Implementation of an Object-
Oriented Toolkit for 3D Graphics and Visualization," In
IEEE Visualization, pp. 93-100, 1996.

4. William J. Schroeder, Kenneth M. Martin, and William E.
Lorenson. The Visualization Toolkit. Prentice Hall PTR,
1996.

5. Carl Cerco, and Thomas Cole. "Three-Dimensional
Eutrophication Model of Chesapeake Bay," In Journal of
Environmental Engineering, pp. 1006-1025, 1993.

6. Adam Forgang, Bernd Hamann, and C. F. Cerco,
"Visualization of water quality data for the Chesapeake Bay,"
In IEEE Visualization, pp. 417-420, 1996.

Figure 6. Graphical User Interface using FLTK Toolkit

Figure 7. Binding Between FLTK and VTK allows the
Development of a Comprehensive Package

Figure 9. Complex Visual Composition of the Domain

Figure 8. Combining a Slice Place of Salinity with

Flow Vectors and an Isosurface of Dissolved Oxygen

Figure 10. Close-up View near the Bay Mouth

Figure 11. Slice and Isosurface Presentation

